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a  b  s  t  r  a  c  t

This  paper  presents  an  online  brain  imaging  framework  for  cognitive  tasks  conducted  with  functional
near-infrared  spectroscopy  (fNIRS).  The  measured  signal  at each  channel  is  regarded  as  the  output  from
a linear  system  with  unknown  coefficients.  The  unknown  coefficients  are  estimated  by  using  the  recur-
sive  least  squares  estimation  (RLSE)  method.  The  validity  of  the  estimated  parameters  is tested  using the
t-statistics.  Contrary  to the classical  approach  that is  offline  and  applies  the  same  preprocessing  scheme
eywords:
unctional near-infrared spectroscopy
eneral linear model
ptical brain imaging
eal-time mapping

to all  channels,  the  proposed  RLSE  method  for a linear  model  formulation  provides  an  independent
robust  adaptive  process  for  individual  channels.  The  experiments  carried  out with  two  fNIRS  instruments
(continuous-wave  and  frequency-domain)  have  verified  the  potential  of  the  proposed  methodology
which  can  facilitate  a prompt  medical  diagnostics  by providing  real-time  brain  activation  maps.
ecursive least square estimation
tatistical parametric mapping

. Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-invasive
robing technology for brain-activity monitoring, which mea-
ures the absorbed quantity of near-infrared light of 650–950 nm
avelength [1,4–6,8,13–15,20–22,24,25].  By measuring diffusely

cattered lights, fNIRS enables determination of the concentration
hanges of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) in
he targeted brain areas [14,15].  This technique has been applied to
he study of numerous brain systems under several clinical condi-
ions, see [5,15,21,24]. For brain computer interface, fNIRS offers
dvantages over functional magnetic resonance imaging (fMRI);
pecifically in its low dimensional data that allows fast processing,
ortability, cost efficiency, and good temporal resolution [5].  Fur-
hermore, it is superior to electroencephalography (EEG) in spatial
esolution and signal-to-noise ratio (SNR).

However, a drawback of fNIRS is the lack of provision of anatom-
cal information, making localization of the brain area difficult
11,18]. This problem was addressed in [25] and the use of a 3D

igitizer to localize the fNIRS signal in the cerebral cortex on top of
n anatomical image of fMRI was presented. Another drawback of
NIRS is its limited penetration depth due to the high level of light
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scattering within tissues. Since the specific utility proposed in this
paper focuses on the cortical region of the brain, this disadvantage
of fNIRS relative to fMRI can be disregarded.

Currently, many research groups are developing statistical-
analysis toolboxes emphasizing the parametric approach of the
general linear model (GLM) [14,20,25].  The GLM is a statistical lin-
ear model that explains data as a linear combination of explanatory
variables with an additive noise [1,5,7,9,14,16,20,25]. As the GLM
measures the temporal variation pattern of signals rather than
their absolute magnitude, it is robust in many cases, even in the
cases of incorrect differential path length factors (DPF) and severe
optical signal attenuation [25]. The event-related paradigm in [20]
showed that the parametric approach can provide a statistically
powerful solution to brain activation mapping. Before process-
ing the data for activation detection using statistical analysis,
preprocessing of the measured signals is usually performed to
improve the SNR. Important preprocessing steps include filtering
of particular frequency band(s), baseline correction, detrending of
low-frequency signals as well as pre-whitening and pre-coloring
[5,7,25]. Furthermore, preprocessing is mostly performed accord-
ing to a generalized scenario and no special attention is paid to
individual channels separately (i.e., some channels may  require
different preprocessing parameters).

There are limitations and conditions in the course of real-time
brain imaging as pointed out by other researchers, see [23] and ref-
erences therein. The possibility of detecting a fast optical response

was demonstrated in [6,13],  but with an extensive offline pro-
cessing (via averaging of several sessions of a particular task)
because of the too weak signals. Studies on a matrix-based tem-
plate were also pursued in the capacity of brain mapping to provide
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ignal-strengths of the measuring channels [1,14],  in which prior
ssumptions on the process and observation noise distributions
ere the main drawback of such Kalman filter-based studies. The

ssessment of noise distributions was done prior to experiments,
hich requires some expectation of the inter-trial variability of the

esponse.
Taking inspiration from the recursive least squares estimation

RLSE) filter’s adaptability, fast convergence and run-time adjust-
ent to varying input statistics [10,17], the present study develops

n RLSE-based framework for online cortical brain imaging. The
easured signal at each channel is regarded as the output from a

inear system with unknown but adaptable coefficients [2,12].  The
nknown coefficients are estimated by using the RLSE method. The
rocess is not bounded to an initial guess or to tuning of critical
arameters. Two different domain NIRS instruments, continuous-
ave (CW) and frequency domain (FD), are utilized to validate the
roposed scheme. The method is further verified by utilizing the
xperimental data provided by the authors of [25]. The proposed
nline brain imaging framework offers a quick medical diagnos-
ics facility. Also, it has a great potential to work equally well for
arametric fMRI imaging.

The following are the main contributions of the present study.
i) A run-time interpolated t-mapping-based brain imaging frame-
ork for fNIRS technology is proposed for the first time. (ii) An

daptive RLSE-based methodology is derived for activity strength
stimation. (iii) Owing to its parametric structure, the scheme acts
s an adaptive spatial filter besides an estimator of the activity
trength. (iv) The proposed adaptive parametric-filtering is par-
icularly attractive for its obviation of any kind of preprocessing
ncluding low-pass and high-pass filtering, baseline specification,
etrending, and pre-whitening and/or pre-coloring. (v) Contrary
o the classical approaches (mostly offline), the proposed adaptive
rocessing provides an online robust treatment at each measuring
hannel unanimously as per the channel’s requirement.

. Theory

.1. Signal conditioning

The concentration change of HbX (i.e., HbO and HbR), �cHbX in
M,  using the modified Beer–Lambert law (MBLL) [4] is given by

��i
HbO(t)

��i
HbR(t)

]
=

[
aHbO(�1) aHbR(�1)
aHbO(�2) aHbR(�2)

]−1 [
��i(t; �1)
��i(t; �2)

]
, (1)

ci
HbX(t) = ��i

HbX(t)

dili
, (2)

here the superscript i (i = 1, 2, . . .,  M)  denotes the ith measur-
ng channel of the source and detector pair, M denotes the total
umber of channels, ��i

HbX(t) is the optical density variation of
bX in �M mm at the ith channel, ��i(t ; �j) (j = 1, 2) is the unitless

otal optical density variation of the light source of wavelength �j,
HbX(�j) is the extinction coefficient of HbX in �M−1 mm−1, di is
he unitless DPF, and li is the distance (in millimeters) between the
ource and the detector at the ith channel. Besides the applicability
f the MBLL (1)-(2) to CW-  and FD-NIRS systems, it is worth noting
hat FD-NIRS provides concentration of HbX on the absolute scale
y means of solving Boltzmann’s transport equation [8].

The existing ambiguities of exact activity localization due to the
rregular and distant optodes (co-located source-detector) can be
oped with a first-order Rytov approximation [19,25]. The interpo-

ated value of the HbX changes at location r is given by

cHbX(t, r) =
M∑

i=1

bi(r)��i
HbX(t), (3)
tters 514 (2012) 35– 41

where bi(r) corresponds to the interpolation kernel derived from
the diffusion equation (i.e., the spatial correlation with the adjacent
channels’ hemoglobin status) [3].  Due to the interpolation rela-
tionship in (3), the statistical testing of �cHbX(t, r) can be directly
transferred from the statistical testing of ��i

HbX(t). This will be
discussed in Section 2.5.

2.2. Brain activity model

In this section, a linear model to identify the activation spot(s)

for a cognitive task is introduced. For yi(t)�=��i
HbX(t), the discrete

form of the model is defined as

yi(k) = x1(k)ˇi
1(k) + x2(k)ˇi

2(k) + x3(k)ˇi
3(k) + 1 · ˇi

4(k) + εi(k)

= XT (k)ˇi(k) + εi(k), (4)

where k is the discrete time, X(k) ∈ � 4×1 is the regression vector
at the kth sampling time, superscript T is the transpose opera-
tor, ˇi(k) = [ ˇi

1(k) ˇi
2(k) ˇi

3(k) ˇi
4(k) ]

T
is the slowly varying

parameters representing the activity strengths at channel i, and
εi∈ � denotes the zero-mean Gaussian noise at channel i. Now, for
run-time realization, the activity parameter vector ˇi(k) needs to
be found at each time step k.

In this paper, the regression vector X(k) is considered to (but not
restricted to) consist of four components: the basis function x1(k)
(i.e., the expected hemodynamic response obtained by convolv-
ing the canonical hemodynamic HbO response function with the
experimental box-car function), its two derivatives x2(k) = �x1(k)
and x3(k) = �2x1(k), and an offset, see how the design matrix in [25]
is formed. It is assumed that the proposed activity regressor X(k) is
uncorrelated with disturbances in the measured signal.

2.3. Adaptive recursive least squares estimation

The RLSE filter computes the temporal statistics directly at each
time step to determine the optimal coefficients [10,17]. The single-
channel model defined in (4) converts the finding of the optimal
estimated parameter ˆ̌ i into the minimization of the cost-function

V( ˆ̌ i, k) = 1
2

k∑
j=1

(ei(j))
2
, (5)

where the estimation error is defined as

ei(k) = yi(k) − XT (k) ˆ̌ i(k − 1).  (6)

Solving the minimization problem, the RLSE [10,17] is given by

ˆ̌ i(k) = ˆ̌ i(k − 1) + K(k)ei(k), (7)

K(k) = P(k − 1)X(k)(1 + XT (k)P(k − 1)X(k))
−1

, (8)

P(k) = (I − K(k)XT (k))P(k − 1),  (9)

where K(k) ∈ � 4×1 is the weighting vector for parameter updat-
ing and P(k) ∈ � 4×4 is the recursive inverse of the input covariance
matrix at sample time k. The initial value P(k − 1) is chosen to be ı I,
ı = 10, see [10].

2.4. Robustness of RLSE scheme

In the presence of a precise and consistently exciting prediction

function X(k), the RLSE algorithm can be robust if it is implemented
on a stable dynamical system [10]. For the problem in hand, the
robustness of the RLSE algorithm can be analyzed quantitatively
by investigating the statistical variance (Var) of the estimated
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ctivity parameter ˆ̌ i(k), perturbed by the disturbances ıyi(k) in
he measured signal yi(k), at channel i as

ar[ ˆ̌ i(k)] = E[ ˆ̌ i(k)]
2 − [E{ˇi(k)}]2

, (10)

here E[ˇi(k)] is the mean value (supposed to be the actual activity
alue). Utilizing (7) with (6) for the perturbed signal yi(k) + ıyi(k),
e obtain

ar[ ˆ̌ i(k)] = 2ˇi(k)E[K(k)ıyi(k)] + E[K2(k){ıyi(k)}2
] (11)

Apparently from (8) to (9),  the disturbances that are uncorre-
ated with X(k) are also uncorrelated with K(k). Thus, we  conclude
hat limk→∞E[K(k)ıyi(k)] = 0 and the RLSE-based estimation is
obust against all the uncorrelated disturbances.
.5. Activation mapping

The activity strength at any location r over the full range of
ptodes can be found by using ˆ̌ (k) from all the channels, where

Fig. 1. Schematic diagram of the proposed RLSE-based brain-imaging framework.
tters 514 (2012) 35– 41 37

ˆ̌ (k) is the stacking form of ˆ̌ i(k). As done offline in [25], the inter-
polated activity strength ˆ̨ (k, r) at time k is obtained as

ˆ̨ (k, r) = (BT (r) ⊗ I4) ˆ̌ (k) (12)

where B(r) is the stacking vector of interpolation kernels given by

B(r) = [ b1(r) b2(r) · · · bM(r) ] (13)

and ⊗ is the Kronecker product. The corresponding error covariance
is

C ˆ̨ (k, r) = (BT (r)˙B(r)) ⊗ (X+�X+T ), (14)

where  ̇ = diag(�2
1 , �2

2 , · · ·, �2
M) with �2

i
being the variance at chan-

nel i, the superscript + denotes the pseudo inverse operator, X is
the stacking form of the regressor vector X(k), and � is the com-
mon temporal correlation matrix for all the channels. It is worth
mentioning that smoothening, pre-whitening, or pre-coloring are
neither used nor required by the proposed adaptive approach; that
is, � = I. The response of the signal of interest at each sample time
k can be calculated using an inner product with a contrast vector
c ∈ � 4×1 as

	̂(k, r) = cT ˆ̨ (k, r). (15)

The corresponding error covariance is given by

C	̂(k, r) = (BT (r)˙B(r)) ⊗ (cT X+�X+T c). (16)

Under the null hypothesis, the response signal 	̂(k, r) is dis-
tributed in the following zero-mean Gaussian distribution

	̂(r, k) : N(0, C	̂(r)). (17)

Hence, the corresponding t-statistics is given by

T(r, k) = cT ˆ̨ (r, k)√
(BT (r)˙B(r))(cT X+�X+T c)

, (18)
where T is the estimated t-value at location r. Thus, the interpolated
t-statistics based brain activation map  over the full range of the
measuring optodes can be drawn on a brain template.

Fig. 2. Channel configurations covering the primary left motor cortex: (a) DYNOT
holder cap measuring 14 channels with 12 optodes and (b) Imagent’s sensor pad
measuring 16 channels with 8 sources and dual-distance detectors A and B.
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. Method

Fig. 1 illustrates the schematic of the proposed RLSE-based
eal-time brain imaging framework. Fig. 2(a) shows the channel
onfiguration of the CW-NIRS instrument (DYNOT, NIRx Medical

echnologies). The system is configured to provide dual wavelength
easurements (760 nm and 830 nm)  from fourteen channels with

 sampling frequency of 1.81 Hz. Fig. 2(b) shows the channel con-
guration of the two-wavelength (690 nm and 830 nm)  FD-NIRS

ig. 3. Results with DYNOT: (a)–(c) online brain activation maps obtained using raw data
arameter convergence in an active channel (Ch. 4) (raw vs. preprocessed), and (i) and (j)
tters 514 (2012) 35– 41

instrument (Imagent; ISS, Inc.) measuring sixteen channels at a
sampling rate of 15.6250 Hz.

The left-motor-cortex-targeting physiological experiment is
based on the right-index-finger-tapping (RIFT) task. Since the tar-
get area of the finger-tapping task is within the primary motor

cortex, the activation occurs within the limits of the penetration
depth of the NIRS instruments. The specific behavioral protocol of
the experiment is the following. An initial 20 s for signal equilib-
rium followed by three sessions each of 40 s, including 20 s for the

, (d)–(f) offline brain activation maps obtained using preprocessed data, (g) and (h)
 parameter convergence in an inactive channel (Ch. 11) (raw vs. preprocessed).
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IFT task and 20 s for rest. The total experiment time takes 140 s.
he validation experiments are conducted twice with both CW-
nd FD-NIRS instruments for 5 healthy male subjects of age 28 ± 3
ears.

. Results

Fig. 3(a)–(c) shows the online brain activation maps, using the

YNOT probing instrument and its raw data, at three time instants
0, 50, and 90 s, respectively. On the other hand, Fig. 3(d)–(f) depicts
he brain activation maps obtained by using the preprocessed
ata. In the second case, the DYNOT signals were recorded first,

ig. 4. Results with Imagent: (a)–(c) online brain activation maps obtained using raw da
h)  parameter convergence in an active channel (Ch. 12) (raw vs. preprocessed), and (i) an
tters 514 (2012) 35– 41 39

and preprocessed with a low-pass Gaussian filter and detrended
with wavelet transform before inputting to the RLSE scheme. The
comparison of Fig. 3(a)–(c) and (d)–(f) demonstrates that almost
identical activity maps are achieved in both cases, which reveals
that the RLSE approach is robust in the presence of disturbances
and noises. For further validation, the convergence of parameter
ˆ̌ i

1 and the estimated output ŷi along with the utilized data (raw
data yi or preprocessed data yi

Pr) and the basis function x1 are

plotted in Fig. 3(g) and (h) for an active channel (Ch. 4), and in
Fig. 3(i) and (j) for an inactive channel (Ch. 11). It is noteworthy
that the estimated output variable ŷi provides most of the
adaptively preprocessed information consisting of baseline, and

ta, (d)–(f) offline brain activation maps obtained using preprocessed data, (g) and
d (j) parameter convergence in an inactive channel (Ch. 8) (raw vs. preprocessed).
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ig. 5. Results with Oxymon: (a)–(c) online brain activation maps obtained using r
h)  parameter convergence in an active channel (Ch. 6) (raw vs. preprocessed), and

emporal trends of noise (whitening and/or coloring) of the specific
hannel i without affecting the estimation variable. It is appar-
nt that each channel has its own status based on its location,
lacement, and motor alignment. Thus, the proposed methodology
rovides a robust treatment as per the respective channel require-
ents. Consistent results were obtained at all of the measuring

hannels.

Fig. 4(a)–(c) shows the online brain activation maps, using

he Imagent probing instrument and its raw data, at three time
nstants 10, 50, and 90 s, respectively. Similarly to Fig. 3(d)–(f),
ig. 4(d)–(f) depict the brain activation maps obtained using
ta, (d)–(f) offline brain activation maps obtained using preprocessed data, (g) and
d (j) parameter convergence in an inactive channel (Ch. 3) (raw vs. preprocessed).

preprocessed data. The parameter convergence plots are drawn in
Fig. 4(g) and (h) for an active channel (Ch. 12), and in Fig. 4(i) and
(j) for an inactive channel (Ch. 8). The almost identical results with
raw and with preprocessed data demonstrate the robustness of
the proposed RLSE approach for this instrument as well. Consistent
results were obtained from all the dataset which were acquired
twice with both CW-  and FD-NIRS instruments from five subjects.

Only small variations were observed in active channel locations
and activity strengths. Such small discrepancies are due to channel
misalignment during sensor fixation, varied attentiveness, and
anatomical differences of individual subjects.
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. Discussion

The current study demonstrates the real-time brain-imaging
apability of the proposed methodology with robustness by con-
idering (but not restricting to) a canonical hemodynamic HbO
esponse function. The proposed method can be extended to cap-
ure a broader range of phenomenology (like vascular steal, oxygen
upply-demand imbalance [24], cerebral blood flow, cerebral blood
olume, and oxygen saturation) to effectively address the voxel-
o-voxel and subject-to-subject variability of the hemodynamic
esponses to neuroactivation.

The interpolation function B(r) in (13) is supposed to be
hree-dimensional in a real measurement scenario. But, for optode-
overage manifold of current fNIRS probing, the two-dimensional
nterpolation function was sufficient to represent the interpolated
NIRS signals [25].

It should be noted that besides obviating the usual pre-
rocessing steps, the method does not require pre-whitening
r pre-coloring either. The validation against preprocessing,
specially against pre-whitening and pre-coloring, was  further
onfirmed by utilizing the block-design finger-tapping data made
vailable in [25], which had been acquired with a different NIRS
nstrument (Oxymon MK  III; Artinis). The dataset was obtained at
4 channels with behavioral protocol of an initial 42 s for signal
quilibrium followed by ten repetitions of 21 s RIFT alternated with
0 s rest periods. Brain activation maps were drawn in Fig. 5(a)–(c)
ith raw data and in Fig. 5(d)–(f) with preprocessed data for

elected sample times. It is noteworthy that the proposed result
n Fig. 5(c), drawn after the convergence of activity parameters,
s consistent with the offline result of [25] with all preprocess-
ng including pre-coloring of the same dataset. The brain-mapping
emplate (left lateral view) was depicted using the open-source
oftware NIRS-SPM that was made available in [25] in order to
ffectively compare the results with their offline strategy. Such t-
apping can be drawn to any brain template by proper channel

egistration with reference points. Fig. 5(g and h) and (i and j) shows
 closer look at the adaptive parameter convergence with robust-
ess at the most activated channel 6 and at the inactivated channel
, respectively, for the raw and preprocessed data.

. Conclusions

This paper presented an RLSE-based framework for online brain
maging. The robust adaptive potential of the proposed approach
rovided a spatially adaptive preprocessing operation besides
ctivity strength estimation. The validation was  carried out by
eans of run-time experiments with CW-  and FD-NIRS prob-

ng instruments. The methodology was further validated with the
ataset in [25]. The scheme provided similar results with raw data
nd preprocessed data, demonstrating the robustness of the adap-
ive processing framework.
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